EPFL- Spring 2025 G. Moschidis

Series 1 MATH 207(c)—Analysis IV 18 Feb. 2025

1. (a) Consider the function defined by
flx)=e™ ( cos(z) + isin(a:))

for x € R. Compute the derivative of f (the function z — €** satisfies the same differen-
tiation properties when A € C as in the case A € R). Show that f is constant and equal
to 1 and, thus, verify Euler’s formula.

(b) Show that, for any «, 5 € R:

cos(av + ) = cos v cos f — sin asin 3,

sin(a + ) = cos asin 3 + sin a cos 3.

(Hint: you might want to use Euler’s formula for e?(®+5))

2. Calculate the real and imaginary parts of the following expressions:
(2) (1+20)(2-3i)  (¢) L+ +(1-i)° (g (;)2025 (g) 2l
, . 10
(b) @) i+ (f) oo () (1+V3i)

3. Calculate the modulus and an argument of the following expressions:
(a) 5+ 5i (c) 03
(b) (—1+V/3)" (d) 3

4. Determine all the complex solutions of the following equations:

(a) 2°=1 (c) 22—2+2=0 () =+ 25=0
(b) 2t =4+4i (d) 24 —222+i=0 ) |z—1=|=+1]

5. Show that, for any x € R, the complex number

T +1
T —1

ya—

lies on the unit circle. Show also that every point on the unit circle except for z = 1 can be
expressed in the above form.
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6. Characterize geometrically the following subsets of C:
() {zec: |o-1/=1
(b)
(c)
(d)

zeC: ||’z:1|| = 1}

{
{ze@: \z—l\—l—\z—l—l\:i’)}
{

2e€C: z=1+42t+4t% fortElR}

7. Show the following equality between sets:

{zE(E*: z+1€R}:{z€C*: Im(z) =0 or |z]:1}.
2

Solutions

1. (a) The derivative reads:

(cos (x) 4 isin (7))

() _ (06—%'76) (cos (x) + isin (z)) +e—i$ﬁ

Ox Ox Ox
= —ie " (cos (x) + isin (z)) + e (—sin (z) + i cos (z))
, , , 0
= sin (z) (e “ +icos(z) (e 2 “ =0

So f(x) is constant in z. Evaluating at = = 0, we have
f(0) = 60(008(0) + isin(())) =1,
so f(z) = e‘“(cos(x) + isin(x)) = 1, which implies that
" = cos(z) + isin(z).

(b) By using Euler’s formula, we can write:
z =P = it — Leos (o) +isin (a)} - {cos (B) +isin (B)}
= {cos («) cos () — sin (a) sin (B) } +i {cos («) sin () + sin («) cos (5)}

Re(z) Im(z)

It follows that:
cos (o + B) = Re {ei(‘”ﬁ)} = cos (a) sin () — sin («) cos ()

sin (a + ) = Im {ei(o‘%)} = cos (a) sin () + sin («) cos (5)

Page 2



EPFL- Spring 2025 G. Moschidis

Series 1 MATH 207(c)—Analysis IV 18 Feb. 2025

2. (a) 2=(1+2)(2—-3i)=2—-3i+4i+6=8+1i, Re(z)=8andIm(z)=1
(b) z =120 = 180 1o 1oin3ind — 19 Re(z) = —1 and Im(2) = —2

1+i T+ 1-i 2
(c) Instead of developing explicitly the power (which is also possible), we can alternatively
write:

_ 93/2 {ei3”/4 B 6—1’377/4} — 93/29 cos (37r/4) _ 25/2(_2—1/2) — 4

2-Re(e?37/4)

leading to Re(z) = —4 and Im(z) = 0.

(d) z=15+15="5+%"=3+3, Re(z)=3/2andIm(z) =1/2

2025

(e) 2= (1) = —(®®) = —((i)™ i) = —(1°® i) = =i, Re(z) =0 and Tm(z) = —1

(f) y = 11025 _ 67j(—10247r—7r) — 0 (mod 2m) | et — 1. (_1) = 1 7 RG(Z) — —1 and
Im(z) =0

(g) = = 21'191;119“2 _ Qi;’:ilo — (*21'7120)(14‘) — —2i—102—2+10i = —6+4i, Re(z) =—4and

(h) It is preferable to use the exponential form:

2 2

1
=20 (cos (ﬂ' + 7;) + i sin <7r + g)) = 2% (2 + z?)

hence Re(z) = —2° and Im(z) = —2°V/3.

10
e (1 + \/gz')lo — 210 (1 + Z\/§> _ 210€i107r/3 _ 21061‘(2ﬂ-+4ﬂ/3)

3. Recall that the polar expression of a complex number z = x +iy is |z]|e?, where |z| = /22 + 42
and 6 is an argument, determined up to 27Z when z # 0; the principal argument Arg(z) is
chosen to lie in the interval (—m, +7]. In view of the fact that = e = cos(#) + isin(f), 0 is
determined by solving the correspinding trigonometric equations.

(a) z=5+5i =5(1+1i) =52 (% + ﬁ) = 5v/2¢™/* 50 that |z| = 5v/2 and Arg(z) = 7 /4
10

(b) 2 = (—1+ V3i)'0 = 210 (—1 +3)
210¢i27/3 50 that |z| = 2! and Arg(z) = 27/3.

(c) We multiply the fraction by the conjugate of the denominator in order to make it real and
identify the real and imaginary parts:

143 147 14+i++V3i—V3 1—\/§+,1+\/§
J— — — VA

Z = — .=
1—2 141 2 2 2

_ 910 (e—m/3)10 _ 910,—il0n/3 _ 910, —idmti2n/3 _
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Therefore, |z| = v/2 and Arg(z) = arctan (ifﬁ) = —arctan (2 +v/3) = —57/12.
(d) z=3"= (61”(3))Z =" 50 that |2| = 1 and Arg(z) = In (3).

4. We will use the fact that any number in the complex plane not equal to 0 can be expressed in
polar coordinates as z = |z|e!A8()) where Arg(z) € (—,7] is unique.

(a) 2° = 150 |z° =1 = |z| = 1 and e®483) = 1 = 5Arg(z) € 217 = Arg(z) € {—

4%, —%”, 0, %’r, 45”} (we have 5 solutions).

(b) 2 =4+ 4 = 4\/5(% +75) = 4v/261/Y 5o |2]* = 4y/2 = |2] = (32)§ and ei*As(z) —

't = 4Arg(z)— % € 27Z, hence Arg(z) € {” — T, 16~ 5> 16 “—l—g} (we have 4 solutions).
(c) By completing the square in this expression, we can write:

1 7 N 7
P —242=0 < 22—z++=<z—> +-=0

4 4 2 4
< 1)2 T
= (z—=) =——=—¢
2 4 4
1 7. 1+9V7
— zk:2+é_el(”/z+’”) with k€ {-1,0} <— zk:;\/—.

Equivalently, one can directly use the quadratic formula with the definition i = /—1.
(d) By using the same method, we have:
22 4i=0 = -2 +1-1+i=(F-12*-1+i=0
= (2-1)2=1-i=+209
= 22 =1+ V2 with ke {0,1}

Since there is no compact form for the final answer, we just write 22 = 1 + v/2e7""/% and

22 = 1+ +v/2¢"/8 and see that the final answer can be written as z, = |/|z|e!(Ar8(z1)/24n7)

and z,, = \/|zg|eiAre(z2)/2+m™) with n € {0,1} and m € {0, 1} independently.
(e) Under the condition that z ¢ {i,£1} (so that the fractions make sense), we write:

LR SN Prz-l-i_
z—i 22—1 (z—i)(z2—1)

— 24+2:-1-i=0

Page 4



EPFL- Spring 2025 G. Moschidis

Series 1 MATH 207(c)—Analysis IV 18 Feb. 2025

—4+z— 1

— <z+1>2—5 - m(&ﬂéﬁ)

2
There is no remarkable angle such that cos(f) = 5/4/41 and sin(f) = 4/v/41. We define
0 = arctan(4/5) such that the answer takes the form z, = —1 + @e’w/ 24km) with k €

0,1},

(f) We write z = x + iy with (z,y) € R such that /(x +1)2+y? = /(z —1)?2 4+ y2. This
expression simplifies into x = 0. The solutions are the purely imaginary numbers. Equiv-
alently, one couls geometrically see the solution as the set of points in the complex plane
with equal distances from +1 and —1; this set is the straight line passing vertically through
the center of the segment connecting +1 and —1, which is the imaginary axis.

\ 7”
' | ¢
\

| \ P = ]
v 1 050 o5 1 !
S _ - 1**, e
o O
Solutions of the equations (a), (b) and (d) Solutions of the equations (c), (e) and (f)

The solutions of the form z = ae® are equally spread over a circle centered at the origin with a radius

r = a, while those of the form z = a + be' sit a circle of radius b shifted by a on the x axis.
5. To show that a complex number belongs to the unit circle, it is sufficient to verify if its norm
is unitary:

T +1
T —1

e+ Va? 4l

o] = [ = e = Y
|z — i ¢+ 1

=1,VzeR

Any number on the unit circle not equal to 1 can be represented in this form: Let z £ 1 be on
the unit circle (so |z| = 1), then we can solve:

a—+1
a—1

z =

— zla—i)=a+i <= a(z—1)=(z2+1)i
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z+1. (z+1)(z-1). |P+2z—2-1 z2—2Z

R P T P T P T

which implies that a is a real number (since z — Z is always imaginary).

ON the other hand, z = 1 can not be represented in this form: Assume, for the sake of
contradiction, that this is not true, then

] r+i (2?2 —1)+i2z m2—1+, 2x
g g g VA
T —1 2+ 1 2+ 1 24+ 1
2x
= 5 =0 <= =0
2 +1
— 1 O_1+'0 1
= 7 - ——
0+1

which is obviously false. Hence, the number z = 1 is the only number in the unit circle that
cannot be represented via this form.

6. To geometrically characterize these subsets, we write z = x + iy with (z,y) € R and represent
the corresponding equations on the plane R?:

(@) |z—1|=|z—1+4iy|=/(z —1)2+y2=1 < (z—1)?>+ y* = 1 which is the equation
of a circle of radius r = 1 centered in C(1,0).
(c) We have:
21
|2 =l

=1 << |z—1|=|z—1]

= (r—1)2+y =2+ (y— 1)

= -+ 1+ =4y -2y +1

= r=y
which is merely the line passing by the origin and cutting the first and third quadrants in
half.

(c) By squaring both sides of the equation and solving for the remaining square root, we can
write:

=1+ lz 41 =3 <= Jr-12+2+ /(@ + 12+ 42 =3

= 12ty =3z r12+y?

= (-1 4+ =9-6\(z+1)2+ 92+ (z+1)? +9°
9+ 4x
6

= @+ 1) +y? =
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9+ 4x)2
= (a:+1)2+y2:7( )
36
— T
9/4 5/4_

which is the standard expression for an ellipse centered at the origin with a major axis
M = 2a = 3 and minor axis m = 2b = /5.

(d) We directly see that Re(z) = 1 + 2t and Im(z) = 4¢* which can be thought of as the
parabolic trajectory of an object under constant positive acceleration along the y-axis.
Indeed we have:

(). w0 (2), -0 ()

The minimum of the parabola is at t = 0 and (z,y) = (1,0) for a constant positive speed
along x ~ R and constant positive acceleration along y ~ 1.

Each subset described above is graphically represented in the figures below.

Y Y Y

\/5/2
1*/—\ 1A* /-
} x } } X
0 U2 1 0 1 —1.5&
—14 —14

W
ylﬁ

5/
(a) [z—-1]=1 (b) |lz—1]=1]z—1 () lz=1+]z+1]=3
Y
1
x
0 1 2
(d) z=1+2t+4t%, t R
7. As in the previous exercise, we use z = x + iy and write:
1 ‘ 1 T — 1y , T — 1y
2t —-=v+wy+ — — =T+t
z T+ T —y e+ vy
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(x4 y)(x* +y*) +a — 1y

x? + y?
P +r(l+y®) | y@®+y®—1)
et 1 G[R
x? + 12 x? 492

For this complex number to be purely real, its imaginary part must be equal to zero. In doing
so, we can see that there are two solutions: y = 0 or 22 + y? = 1. This is equivalent to the set
{z € C* : Im(z) = 0 or |z| = 1} that describes complex numbers that are either purely real or
belong to the unitary circle centered at the origin. Note: the null solution z = 0 is discarded
following the definition of the original set.
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